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Abstract. States of charge carriers in transition metal compounds with low-frequency zero-
spin–nonzero-spin transitions (e.g. some Co compounds) are investigated. Such transitions
indicate the appearance of magnetic excitons on the transition metal ions. Charge carriers interact
strongly with the excitons via exchange forces. As a result, magnetoexcitonic self-trapping of
carriers (holes) is possible in the ions when a complex consisting of a hole and one or several
magnetic excitons arises. According to the parameters of the system, the magnetic ordering
in the complex may be either collinear ferromagnetic or antiferromagnetic, or indeed canted
antiferromagnetic. In the ground state of degenerate semiconductors, spontaneous separation
into magnetoexcitonic and nonmagnetic phases is possible, with all of the holes concentrated
in the former phase. The same magnetic structures are allowed in the ground state as in the
hole–exciton complexes. On increase of the hole density, percolation of holes and magnetic
excitons takes place, which leads to a transition from the insulating phase-separated state to the
highly conducting phase-separated state.

1. Introduction

A class of transition metal compounds exists in which the d shells of transition metal ions
are filled only partially but, nevertheless, these ions are nonmagnetic. The reason for this
is the crystalline field which causes violation of Hund’s rule for the ions inside the crystal.
This rule, requiring the maximum possible magnitude of the d-shell spin, is a consequence
of the fact that the exchange interaction between electrons of the same d shell tends to align
their spins parallel to each other. But the crystalline-field splitting of d levels may exceed
the corresponding exchange energy, and then Hund’s rule is valid not for the whole d shell
but only for each crystalline-field component separately.

As an example, crystals containing Co3+ ions will be considered. The fivefold orbitally
degenerate d level is split into a threefold degenerate t2g level and a twofold degenerate
eg level. The Co3+ ground state is the singlet1A1g(t62g) with all six d electrons occupying
the lowest t2g component and with no electrons on the eg level. But the excited spin-2
5T2g(t42ge2

g) state with total spins of both the t2g and eg subshells equal to 1 usually lies
very close to the singlet (from 0.01 to 0.08 eV [1]). Thus, this state may be treated as a
low-frequency magnetic exciton. For example, in LaCoO3 the exciton energy is 0.02 eV
according to [2] and 0.05 eV according to [3]. Similar properties are displayed by HoCoO3

[4] and Co2O3 [5].
Usually such materials are p semiconductors. Two types of hole state are possible:

the hole may move over magnetic Co ions or over nonmagnetic (e.g. oxygen) ions. The
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quantitative results are the same in the two cases. For the sake of definiteness, the former
case will be considered.

If charge carriers appear in such a crystal, their interaction with magnetic excitons
becomes crucial. The main part of this interaction is the hole– (or electron–) exciton
exchange which is very strong when the carrier and exciton are located on the same d ion
(their exchange integral may be of the same order of magnitude as that for the d electrons
of the same ion, i.e. it may reach 10 eV). For this reason each magnetic exciton may trap
a carrier and, hence, reduce its energy.

Moreover, the energy of a nondegenerate semiconductor containing free carriers may be
reduced even in the absence of prefabricated excitons if one creates one magnetic exciton
or their complex especially for their trapping of a carrier. Then the energy spent in the
creation of the magnetic excitons will be compensated by the energy gain resulting from
the trapping of carriers by excitons. In the case of the exciton complex one may speak of
a self-trapped state of a charge carrier inside a region occupied by excitons. Such a state
resembles the charge-carrier self-trapping inside regions of a changed magnetic phase, e.g.,
inside ferromagnetic regions in an antiferromagnetic semiconductor [6, 7].

But there is an essential difference between the self-trappings in these two cases. First,
the magnetoexcitonic regions are not necessarily ferromagnetically ordered. They may
be ordered in some other way, e.g., antiferromagnetically, and the canting of sublattice
moments is possible. Second, the fourfold-occupied t2g subshells in the excited state5T2g

are orbitally degenerate. This causes the tendency towards the Jahn–Teller effect which
lowers the energy of the excited ion due to the lifting of this degeneracy. It is essential
that the Jahn–Teller effect should be found not throughout the entire crystal but only in the
region where magnetic excitons are induced by a charge carrier. Thus, unlike the situation
discussed in [6, 7], here the self-trapped charge carrier not only changes the magnetic state
of the self-trapping region, but also causes its crystallographic distortion.

For degenerate semiconductors, in full analogy with degenerate antiferromagnetic
semiconductors for which numerical calculations were carried out in [8, 7], one may expect
that in the materials considered the carrier self-trapping is a cooperative phenomenon. It
is energetically favoured in the ground state of the degenerate semiconductor for all of the
charge carriers to be concentrated inside the magnetoexcitonic phase. The portion of the
crystal outside the excitonic phase is insulating and nonmagnetic, i.e. charge-carrier-induced
phase separation of the crystal takes place.

As the magnetoexcitonic and nonmagnetic phases are charged oppositely, the Coulomb
forces arise in the phase-separated system under consideration. To diminish the Coulomb
energy, the phases tend to intermix. But, on the other hand, very small regions of both
phases lead to increases in the interphase energy. As a result of the competition of these two
factors, at carrier densities that are not very large, magnetoexcitonic droplets which contain
several dozens of carriers should appear inside the nonmagnetic host. These carriers are
locked inside the droplets and cannot move throughout the crystal.

But, on increase of the density of doped carriers, the portion of the excitonic
phase increases, and its percolation begins—this is the concentration insulator-to-metal
phase transition in a degenerate magnetoexcitonic semiconductor. Thus, magnetoexcitonic
semiconductors should belong to a vast class of materials in which the charge-carrier-induced
phase separation is possible (see the monograph [9] and the review article [10]).

These theoretical arguments may explain the unusual electric and magnetic properties
of La1−xSrxCoO3 crystals first discovered in [11, 12]. Substitution of divalent Sr instead of
trivalent La leads to the appearance of holes in the crystal. But it would be an error to think
that all of the Sr ions act as acceptors. As is common for degenerate semiconductors, most
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of the Sr atoms form clusters, whereas acceptors are only single Sr atoms not entering these
clusters. For this reason the hole density should be considerably less than the number of Sr
atoms in the crystal. It was found in [11, 12] that La1−xSrxCoO3 with x > 0.05 becomes
ferromagnetic, and atx = 0.2 the insulator-to-metal transition takes place. But, according
to [1], the region 0< x < 0.18 corresponds to the spin-glass regime. Possibly, this result
does not contradict the scheme of magnetoexcitonic–nonmagnetic phase separation advanced
here, since the mixture of the magnetically ordered excitonic regions and nonmagnetic ones
may mimic the spin-glass behaviour of the sample.

2. Magnetoexcitons and holes

First, the magnetoexciton frequency for the insulating crystal should be determined. With
this aim the exchange energy of the d shell withz electrons in it should be evaluated. If one
assumes the same value of the d–d exchange integralA for all of the pairs of d electrons,
one may write the Heisenberg Hamiltonian in the form

Hdd = −(A/2)

z∑
i 6=k

z∑
i 6=k

(si · sk) = −(A/2)

{ z∑
i=1

si ·
z∑

k=1

sk − zs(s + 1)

}
= −(A/2){St (St + 1) − zs(s + 1)} (1)

where si is the spin operator for theith electron,s = 1/2 its magnitude, andSt the
magnitude of the total spin of the d shell.

Using (1), one obtains the following expression for the exciton frequency corresponding
to the transition1A1g →5 T2g (z = 6) at fixed ion positions:

ω = 21 − 3A (2)

where1 is the energy difference between t2g and eg orbital levels(h̄ = 1).
One should consider also the Jahn–Teller effect in the5T2g state of the Co ion. In it,

the state of four d electrons on the t2g level is threefold degenerate, and deformation of the
lattice should reduce the energy of this state. Obviously, this effect should be related mainly
to the optical phonon branch as it corresponds to deformation of the elementary cell and
not to displacement of the cell as a whole. For this reason the Hamiltonian of interaction
of optical phonons with t2g electrons may be represented in the form

Hi = (i/N1/2)
∑
fq

∑
λλ′

exp(iq · f)vλλ′(q)(bq − b∗
−q)a

∗
fλafλ′ (3)

vλλ′(q) = exp(iq · h)vλλ′(h) (4)

wherea∗
fλ andafλ are the t2g-electron operators;f labels the elementary cells; and the index

λ = −1, 0, 1 may be interpreted as thez-component of the pseudospinl of magnitude 1
labelling the degenerate levels (the true electron spin index is inessential here and for this
reason is omitted). Furthermore,b∗

q, bq are the operators for optical phonons with the wave
vector q. For the sake of simplicity only one optical phonon branch is considered.N is
the total number of elementary cells in the crystal.

Unfortunately, the information on the Hamiltonian of the electron–phonon interaction
(equations (3) and (4)) is insufficient at present, and results obtained here on the Jahn–
Teller effect are rather formal. The diagonal components of the interaction matrix may be
presented in the formvλλ = λv ensuring the absence of the Jahn–Teller effect for completely
filled subshells (cf. [13]) One may argue that the coefficientsvλλ′(h) represent electrostatic
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multipole–multipole interactions and for this reason should vanish rapidly with increasing
h. Thus, one may approximate these coefficients, putting in (4)

vλλ′(h) = wλλ′d(h, 0). (5)

Then, after diagonalizing the electron part of Hamiltonian (3),∑
λλ′

wλλ′a∗
fλafλ′ →

∑
µ

3µd∗
µdµ

where thedµ are the new t2g operators, one obtains

Hi = (i/N1/2) exp(iq · f)3µ(bq − b∗
−q)d

∗
fµdfµ. (6)

To find the gain in energy due to the Jahn–Teller effect caused by a magnetic exciton
when theµth electron level is filled, one should write down the total phonon Hamiltonian
and carry out the shift transformation of the phonon operatorsb = β +constant, eliminating
terms linear in phonon operators:

Hph = ν
∑

q

b∗
qbq + (i/N1/2)

∑
q

∑
µ

exp(iq · f)3µ(bq − b∗
−q)

= ν
∑

q

β∗
qβq − δµ δµ = 32

µ/ν. (7)

Hereν is the frequency of the relevant optical phonons, andδ is the Jahn–Teller gain in the
energy. Obviously, it is at its maximum at the maximum3µ, and in what follows only this
value3 will be treated. Then the magnetoexciton frequency, with allowance for the Jahn–
Teller effect, should be given byωJT = ω − δ with ω given by (2). Hence, accounting for
the Jahn–Teller effect is tantamount to renormalization of the magnetoexcitonic frequency.

Now we turn to considering holes. First we consider a hole in the nonmagnetic phase,
assuming that holes are located on Co ions, too. This leads to the appearance of a fivefold-
occupied t2g level among the sixfold-occupied ones. The hole may move over the crystal, as
the hopping integralt between neighbouring atoms is nonzero. But for d levels the strong
inequalityA � t should hold, asA is of zeroth order andt of first order in the small orbital
overlap for neighbouring atoms. For this reason one can ignore this motion in the zeroth
approximation, and, according to (1), in the first approximation the hole energy reckoned
from the energy of the crystal in the nonmagnetic state is given by

Eh(1/2, k) = −3A/4 − 6tγk

γk = [cos(kxa) + cos(kya) + cos(kza)]/3
(8)

(k is the hole quasimomentum; the lattice of magnetic ions is assumed to be simple cubic
with the lattice constanta).

Let us assume now that the entire crystal is in the ferromagnetically ordered magneto-
excitonic state and contains a hole. One should consider two possible hole states.

(1) The hole corresponds to the spin-3/2 state(t42geg) of the magnetic ion, and then its
energy reckoned from the energy of the crystal in the ferromagnetic state is

Eh(3/2, k) = 3A/4 − 1 − 6t ′γk (9)

wheret ′ is the hopping integral for eg orbitals.
(2) The hole corresponds to the spin-5/2 state(t32ge2

g). In this case the hole energy is

Eh(5/2, k) = −7A/4 − 6tγk. (10)
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One obtains from (2), (9), and (10) in the zeroth approximation int for the difference
between these energies

Eh(5/2) − Eh(3/2) = 1 − 5A/2 = −A + ω/2. (11)

According to (11), at the small exciton frequenciesω � A in which we are interested, the
hole spin-5/2 state is more energetically favoured than the spin-3/2 state. Thus, only the
former will be treated. Using (8) and (10), one finds the difference between hole energies
in nonmagnetic and magnetic states:

U = Eh(1/2) − Eh(5/2) = A. (12)

Thus, according to (12), the energy of a system with one hole is lower by the quantityU

in the ferromagnetic state than in the nonmagnetic state. In the zeroth approximation int ,
this result is valid for any magnetic ordered or disordered state of the crystal.

3. Single-hole magnetoexcitonic complexes

Let us consider now the ground state of the hole. As was already pointed out, it should be
the self-trapped state. It may described by a theory obtained as a generalization of earlier
theory [6, 7]. Two limiting cases will be discussed: 6t � ωJT and 6t � ωJT . In both of
these cases the inequalityA � ωJT will be assumed.

In the first case only one magnetic exciton is created. The energy of such a system is
found from the well known Lifshitz equation [14]

1 + (U/N)
∑

k

(E − ωJT − 6tγk)−1 = 0 (13)

which gives

E = −U + ωJT − 6t2/U. (14)

The second case is many excitonic. It is assumed that each d shell inside a sphere of
a radiusR is excited into the5T2g state. The hole is localized inside this region, whose
radius should be determined from the condition of the minimum total energy of the system.

One should take into account that if two neighbouring ions are excited, an exchange
interaction between them arises. If this exchange is ferromagnetic, then, certainly,
ferromagnetic ordering should be established inside the magnetoexcitonic complex. But
if it is antiferromagnetic, the ordering of the complex may be not only ferromagnetic but
also collinear or canted antiferromagnetic.

To simplify the calculations we shall assume that the lowest Jahn– Teller component
is nondegenerate. Then for hole hoppings a theory developed in [7, 15] may be applied.
This theory is valid forA � t and takes into account that in the zeroth approximation in
t/A the spin of the carrier is bound rigidly to the spin of the atom at which it is located
at the moment. After transition to a neighbouring atom, the carrier spin is bound to its
spin. For this reason the effective hopping integralte for a carrier depends on the angle 2θ

between regular directions of spins in the magnetic structure which is assumed to be canted
antiferromagnetic and, hence, as limiting cases includes both collinear ferromagnetic and
antiferromagnetic structures:

te = t [cos2 θ + (2S + 1)−1 sin2 θ ]1/2. (15)

HereS is the spin magnitude for the carrier-free magnetic atom, which is equal to 2 in the
case of the state5T2g.
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The carrier band bottom lies at –6te. As seen from (15), the effective hopping integral
for the ferromagnetic ordering is 51/2 times larger than for the antiferromagnetic one. For
this reason the carrier hopping tends to establish the ferromagnetic ordering. But as was
assumed above, the direct exchange between excitons tends to establish antiferromagnetic
ordering. Hence, depending on the parameters of the system, the minimum of the energy
of the system may be attained for both of these magnetic structures inside the excitonic
complex, as well as for the noncollinear antiferromagnetic structure. Other structures seem
to be less preferable.

It is natural to assume that the many-excitonic complex occupies a region of radiusR.
For R � a, wherea is the lattice constant, the effective-mass approximation is valid for
the hole. Then the total energy of the system is given by the expression

E = −U − 6te + k2/2m + (4π/3)D(R/a)3 (16)

whereU is given by (12), the hole effective massm is related to the hopping integral by
1/2m = te(θ)a2, andD is the energy spent in creation of the excitonic phase per atom:

D = ωJT − K cos 2θ K = 3IS2 (I < 0) (17)

whereI stands for the interexcitonic exchange integral.
The parameterk in (16) should be determined from conditions on the boundary between

the nonmagnetic and excitonic phases. ForA andR large enough, when the hole attenuation
length outside the excitonic phase is small compared toR, one may putk = π/R.

Equations (16) and (17) resemble the corresponding equations in the theory of electron
self-trapping in an antiferromagnetic semiconductor [6, 7]. But, unlike in them, the energy
is here minimized not only with respect toR but also with respect toθ .

First, let us consider the collinear structures. Then, in full analogy with [6, 7], after
minimizing E (16) with respect toR the following expressions are obtained:

E = −U − 6te + (5π8/3/3)t3/5
e (2D)2/5 (18)

R = a(πte/2D)1/5. (19)

As follows from (15) and (18), the antiferromagnetic exciton ordering is more
energetically favoured than the ferromagnetic, if

t/ωJT 6 34, 9[(1 − κ)2/5 − 0.62(1 + κ)2/5]5/2 (20)

with κ = K/ωJT < 0. As follows from (20), forκ ∈ [−1, 0] condition (20) is compatible
with the conditiont � ωJT under which (20) was deduced.

The energies of the canted structures may turn out to be still lower than the energies of
the collinear states (18). By minimizing (16) with respect to bothR andθ , one obtains the
following equation for determination of the canting angle:

3t2{−6 + π2[2D(θ)/πte(θ)]2/5} = 20πKte(θ)[πte(θ)/2D(θ)]3/5. (21)

The equilibrium radius dependence on the canting angle is described by equation (19) in
which bothte andD are assumed to be dependent onθ . It is worth mentioning that, despite
a very high gain in the energy due to the self-trapping (∼A) the radius of the excitonic
complex does not include the large parameterA and in typical cases may amount only to a
few lattice constants.

As an example, one may evaluate the range inside which the canted structure is more
energetically favoured than the collinear structures, takingK = −ωJT /2. Then one obtains
from (21) that this takes place in the range of values oft/ωJT between 8.9 and 21.5. At
lower values the collinear antiferromagnetic state should be stable and at higher values the
ferromagnetic should be stable.
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4. Magnetoexcitonic phase separation in degenerate semiconductors

In degenerate semiconductors with large hole density, the magnetoexcitonic self-trapping of
holes should occur in a correlated manner as the holes interact with each other. One might
expect that it will be energetically favoured for a magnetoexcitonic region to capture not
one but several holes simultaneously as the energy expenditures for creation of a common
magnetoexcitonic region are less that those for creation of a separate magnetoexcitonic
region for each hole.

Figure 1. Two-phase states of a degenerate semiconductor: (a) insulating; (b) conducting. The
magnetoexcitonic part of the crystal is shaded, while the nonmagnetic part is not.

But this factor competes with other factors hindering the hole concentration. Here we
shall consider the case where the impurity diffusion is negligible, so that ionized acceptors
and, hence, their charge, remain distributed uniformly over the crystal. This means that
the hole concentration in some regions of the crystal leads to the appearance of Coulomb
forces, increasing the energy. On the other hand, the concentration of holes increases their
kinetic energy. For this reason the optimum distribution of magnetoexcitonic regions and
holes arising as a result of competition between above-mentioned factors should be found.

The calculation presented below is performed as a generalization of calculation carried
out in [7, 8]. A variational method is used. The trial wave function of the system is chosen in
the following way. Two different geometries of the two-phase state are considered: (1) the
insulating state when the holes are concentrated inside magnetoexcitonic regions assumed
to be spherical droplets which are separated from each other by the insulating nonmagnetic
phase, i.e., the region of the excitonic phase is multiply connected (figure 1(a)); and (2)
the highly conducting state when the excitonic region over which holes may move freely is
simply connected. The magnetoexcitonic phase is the host for the droplets of the insulating
nonmagnetic phase (figure 1(b)).

The magnetic ordering in the magnetoexcitonic phase may be collinear ferromagnetic
or antiferromagnetic, or indeed canted antiferromagnetic. The latter may be stable as
the indirect exchange via charge carriers in the case considered cannot be described by
the RKKY theory, as its applicability conditionµ � AS is not met (µ is the Fermi
energy). In reality, this inequality is replaced by the opposite one, which means that the
indirect exchange cannot be described in terms of an effective Heisenberg Hamiltonian,
which, certainly, cannot allow the canted two-sublattice ordering. But for an isotropic
non-Heisenberg exchange, such ordering is possible [16].

The variational parameters for the ground-state energy of the system are the ratio
x of volumes of the nonmagnetic and magnetoexcitonic regions, the radiusR of the
spherical droplets of the minority phase inside the host, and the canting angle 2θ for
antiferromagnetic sublattice moments in the magnetoexcitonic phase. Hence, an additional
variational parameterθ appears here as compared to [7, 8].

The total energy of the system is given by the equation

E = EV + ES + EC + EM. (22)
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HereEV andES are respectively the bulk and surface energies of the degenerate electron
(or hole) gas confined inside the magnetoexcitonic phase which is calculated in the Born–
Oppenheimer approximation. With allowance for (15) one may generalize the corresponding
equations of [7, 8] by taking into account the dependence on canting angle of the conduction
band bottom and that of the hole effective mass. Thus, one may write these equations per
volume unit:

EV = −6ten + (3/5)µpn(1 + x)2/3 (23)

ES = (3/16)(π/6)1/3µpn2/3R−1β(1 + x)1/3

µp = (6π2n)2/3/2m = te(6π2na3)
(24)

wheren is the average hole density,te is determined by (15) withS = 2, β = 3 for the
geometry of figure1(a) andβ = 3x for the geometry of figure 1(b).

The quantityEC in (22) denotes the Coulomb energy arising due to the nonuniform
distribution of the holes over the crystal. It is found by dividing the crystal into Wigner–
Seitz cells where each charged droplet of the minority phase is surrounded by a spherical
layer with charge equal in value but opposite in sign. In full accordance with [7, 8], one
may write in the jellium model

EC = (2π/5)(e2/ε0)n
2R2f (x) (25)

wheree is the electron charge,ε0 is the dielectric constant of the crystal, and

f (x) =
{

2x + 3 − 3(1 + x)2/3 for the case of figure 1(a)

x[3x + 2 − 3x1/3(1 + x)2/3] for the case of figure 1(b).

Finally, the quantityEM entering (22) is the density of the exchange energy of the magnetic
subsystem. With allowance for (12) and (17) it is written in the form

EM = −Un + D/[(1 + x)a3]. (26)

One concludes from (23)–(26) that only the surface energy increasing with diminishing
R and the Coulomb energy decreasing with diminishingR depend onR. This makes it
possible to carry out minimization of the sumQ = ES + EC at fixedx andθ in an explicit
form, which leads to the following equations for the stationary values:

Q = ES + EC = 0.579γ nβ[f (x)/β]1/3(1 + x)2/9

γ = (µ2
pn1/3e2/ε0)

1/3

nR3 = 0.0601µpβ(1 + x)1/3ε0/[f (x)e2n1/3].

(27)

After substitution of (27) into (22) a numerical minimization of the total energy with respect
to x andθ is required.

In carrying it out one should keep in mind that there are two different branches of the
total energyEa or Eb corresponding to the two geometries of figures 1(a) or 1(b), as they
differ in the equations forQ (27) due to the difference in their values off (x) and β. A
numerical analysis shows that, at the same values of the canting angleθ , the quantityEa

is less thanEb for all x > 1. For all x < 1 the relationship between them changes to the
opposite one. This means that forx > 1 the minimum total energy (22) is reached for the
geometry of figure 1(a) and forx < 1 for the geometry of figure 1(b).

One can easily see from (22), (23), (26) and (27) that with the hole densityn fixed,
the parameters of the two-phase state are uniquely determined by the following set of
dimensionless quantities:ν = na3, κ = K/ωJT , τ = t/ωJT and ξ = e2/(ε0aωJT ). The
numerical calculations were carried out for the following values:τ = 10 andξ = 5.
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The results may be summarized as follows. For a rather weak antiferromagnetic
exchangeκ = −0.5 the magnetoexcitonic phase exists and has collinear ferromagnetic
structure (θ = 0) for any hole densities. One might think that the ferromagnetic structure
contradicts the results indicated at the end of the section 3 which are obtained for the same
κ-value, but one should keep in mind that the problems treated in section 3 and here are
not equivalent: the former is single hole and the latter many hole. This is reflected by the
fact that in latter case the additional parameterξ describing the Coulomb interaction should
be introduced. For this reason the results just mentioned are compatible.

The transition from the two-phase insulating state (figure 1(a)) to the two-phase highly
conducting state (percolation of the holes and magnetic excitons) occurs with increasingly
reduced hole density at the valueνp = 0.036. This concentration transition was found to be
first order: it is accompanied with an abrupt change of the optimal values of the variational
parameters:x changes from the valuexa = 1.07 to xb = 0.93, andR from Ra = 6.21a
to Rb = 6.30a. The number of holes in the magnetoexcitonic droplet at the percolation
densityNa = (4π/3)(Ra/a)3νp(1 + xa) is 75.

On the other hand, as the jump in the parameter values at the percolation is rather small,
one might suspect that the abrupt transition is an artifact following from the circumstance
that both of the geometries of figure 1 fail to reproduce the real geometry of the two-phase
state close to the percolation density. In reality, the percolation possibly occurs via the
second-order phase transition.

For a stronger antiferromagnetic exchangeκ = −0.7 (and the same valuesτ = 10 and
ξ = 5) the magnetoexcitonic part of the crystal has canted antiferromagnetic structure. The
percolation of the conducting magnetoexcitonic phase which takes place atνp = 0.030 is
accompanied by jumps not only of the quantitiesx andR but also by a jump of the canting
angle. In this case jumps of the parameters at the percolation densities are more pronounced:
xa = 1.17 → xb = 0.87; Ra = 5.60a → Rb = 5.64a; 2qa = 97◦ → 2θb = 111◦. The
number of holes in a magnetoexcitonic droplet close to the percolation density is 48.

Further increase in the antiferromagnetic exchange integral up toκ = −0.9 leads to
collinear antiferromagnetic ordering in the region of existence of the two-phase state. The
percolation parameters are as follows:νp = 0.010, xa = 1.10 → xb = 0.93, Ra = 6.22a →
Rb = 6.40a, and the number of the holes in a droplet is 21.

Now we discuss qualitatively the effect of an external magnetic field on the
phase separation and resistivity of the two-phase systems. As follows from energetic
considerations, the field tends to increase the volume of the magnetic phase. In particular,
if at zero field the system is in the insulating two-phase state but close to percolation, the
applied field may cause percolation, i.e., an insulator-to-metal transition which is equivalent
to a giant negative magnetoresistance. In addition, like in other spontaneously magnetized
degenerate semiconductors, negative magnetoresistance related to magnetoimpurity capture
and scattering of charge carriers [7] may be realized in the highly conducting state of the
materials considered. The negative magnetoresistance in such a state of La1−xSrxCoO3 was
observed in [17].

In the calculations presented above, the magnetoexciton frequency was considered to
be density independent. But, in reality, one should also take into account the fact that
doping changes the lattice constant of the crystal and, hence, the crystalline field. For this
reason the magnetoexciton frequency should depend on the degree of doping. In [2] it was
even assumed that doping of the initial material with Sr stabilizes the high-spin state of
the Co ions via this mechanism and not via the exciton–hole interaction. But in reality the
sign of the effect caused by the lattice expansion on doping is unclear—it may be just the
opposite. At present, it is impossible to decide which of these mechanisms is more powerful:
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they may work simultaneously. Taking into account the doping dependence of the exciton
frequency in the phase-separation calculation will be reasonable only after obtaining reliable
experimental data on this effect.

5. Conclusions

States of charge carriers in transition metal compounds with low-frequency zero-
spin–nonzero-spin transitions (e.g. some Co compounds) have been investigated.
Magnetoexcitonic self-trapping of carriers (holes) is possible in these compounds when a
complex consisting of a hole and one or several magnetic excitons arises. The energy spent
in magnetoexciton creation (the transition of the ion into a magnetic state) is compensated
by the gain in energy due to the exchange between the hole and magnetoexcitons. In
the ground state of degenerate semiconductors, spontaneous separation into magnetic and
nonmagnetic phases is possible with all of the holes concentrated inside the former.

Depending on the direct exchange between excitons, collinear ferro- and antiferromag-
netic orderings, as well as canted antiferromagnetic ordering, are possible in the systems
under consideration. At relatively low hole densities the magnetic phase is a set of small
droplets inside the nonmagnetic host. On increase of the density, percolation of holes
and magnetic excitons takes place, which leads to the transition from the insulating phase-
separated state to the highly conducting phase-separated state.
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